Section 7.1

$$
\begin{array}{ll}
x^{2}=64 & x^{2}=64 \\
x^{2}-64=0 & \sqrt{x^{2}}=\sqrt{64}
\end{array}
$$

Solve: $(x-8)(x+8)=0 \quad$ or $\quad x= \pm 8$

$$
\begin{aligned}
& x=8 \quad x=-8 \\
& x \in\{8,-8\}
\end{aligned}
$$

In the second line of the second version, we "took the square root" of two items. This was an operation.

I will explain the reason this "operation" results in two answers in a moment.
Consider: "Find the square root of 64 " This is written: $x=\sqrt{64}$.
In this case there is ONLY one answer and that answer is 8 . Writing $\sqrt{64}$ is just another way to write an $8 \ldots$. as $\frac{12}{2}$ is another way to write a 6 . We say that $x=\sqrt{64}$ asks for the "principle square root". If we wanted the -8 answer, we would have to specifically ask for the negative root.

The reason we get two answer as in our first example is from the definition of absolute value:

$$
\sqrt{\star^{2}}=|\star|=\left\{\begin{array}{cc}
-\star & \text { if } \star<0 \\
\star & \text { if } \star \geq 0
\end{array}\right.
$$

Actually we get two answers for $\sqrt{x^{2}}$, we get $+x$ and $-x$ and the square root of 64 is 8 . Thus we have $\mathrm{x}=8$ and $-x=8$ and end up with two solutions.

The rule is....
"If YOU put in the square root, then there are 2 answers."
"If the square root is already there, there one answer."

Section 7.2 Rational Exponents

This extends our definition of exponents. No longer can we "count items" to determine

$$
\left(x^{3}\right)^{2}
$$

the exponent as we have before: $x^{3} \cdot x^{3}$

$$
\underbrace{x \cdot x \cdot x \quad x \cdot x \cdot x}_{x^{6}}
$$

Exponents can be rational numbers (fractions) instead of integers.

$$
x^{\frac{a}{b}}=\sqrt[b]{x^{a}}=(\sqrt[b]{x})^{a}
$$

$27^{\frac{2}{3}}$	$25^{\frac{3}{2}}$	$\sqrt[5]{t^{20}}$	$\sqrt{\sqrt[3]{x}}$
$\left(3^{3}\right)^{\frac{2}{3}}$	$\left(5^{2}\right)^{\frac{3}{2}}$	$\left(t^{20}\right)^{\frac{1}{5}}$	$\left(x^{\frac{1}{3}}\right)^{\frac{1}{2}}$
3^{2}	5^{3}		
9	125	t^{4}	$x^{\frac{1}{6}}$

All or our rules for exponents still apply.

When you write a square root symbol, be sure it covers everything that is inside the square root.

We want this: $\sqrt{13 a b}$ rather than $\sqrt{13 a} b$

Section 7.3 Multiplying Radical Expressions

$$
\begin{aligned}
& a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}=(a \cdot b)^{\frac{1}{n}}=\sqrt[n]{a b} \\
& \sqrt{500} \\
& \sqrt{100} \sqrt{5} \\
& 10 \sqrt{5}
\end{aligned} \sqrt{15} \cdot \sqrt{6} . \sqrt{3 \cdot 5 \cdot 3 \cdot 2} .3 \sqrt{10}
$$

For a square root, it takes 2 identical factors on the inside to get one factor on the outside.
In the square root of 100 , we had two 10 s so we got a single 10 on the outside. In the second example, we had a pair of 3 s so we got ONE 3 on the outside.

If we had cube roots, we would need 3 identical factors on the inside to get ONE factor on the outside.

